Combining Nearest Neighbor Classifiers Through Multiple Feature Subsets

نویسنده

  • Stephen D. Bay
چکیده

Combining multiple classi ers is an e ective technique for improving accuracy. There are many general combining algorithms, such as Bagging or Error Correcting Output Coding, that signi cantly improve classi ers like decision trees, rule learners, or neural networks. Unfortunately, many combining methods do not improve the nearest neighbor classi er. In this paper, we present MFS, a combining algorithm designed to improve the accuracy of the nearest neighbor (NN) classi er. MFS combines multiple NN classi ers each using only a random subset of features. The experimental results are encouraging: On 25 datasets from the UCI Repository, MFS signi cantly improved upon the NN, k nearest neighbor (kNN), and NN classi ers with forward and backward selection of features. MFS was also robust to corruption by irrelevant features compared to the kNN classi er. Finally, we show that MFS is able to reduce both bias and variance components of error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACO Based Feature Subset Selection for Multiple k-Nearest Neighbor Classifiers

The k-nearest neighbor (k-NN) is one of the most popular algorithms used for classification in various fields of pattern recognition & data mining problems. In k-nearest neighbor classification, the result of a new instance query is classified based on the majority of k-nearest neighbors. Recently researchers have begun paying attention to combining a set of individual k-NN classifiers, each us...

متن کامل

Multi-hypothesis nearest-neighbor classifier based on class-conditional weighted distance metric

The performance of nearest-neighbor (NN) classifiers is known to be very sensitive to the distance metric used in classifying a query pattern, especially in scarce-prototype cases. In this paper, a classconditional weighted (CCW) distance metric related to both the class labels of the prototypes and the query patterns is proposed. Compared with the existing distance metrics, the proposed metric...

متن کامل

Statistical computation of feature weighting schemes through data estimation for nearest neighbor classifiers

The Nearest Neighbor rule is one of the most successful classifiers in machine learning. However, it is very sensitive to noisy, redundant and irrelevant features, which may cause its performance to deteriorate. Feature weighting methods try to overcome this problem by incorporating weights into the similarity function to increase or reduce the importance of each feature, according to how they ...

متن کامل

Nearest Neighbor Ensembles Combines with Weighted Instance and Feature Sub Set Selection: A Survey

Ensemble learning deals with methods which employ multiple learners to solve a problem The generalization ability of an ensemble is usually significantly better than that of a single learner, so ensemble methods are very attractive, at the same time feature selection process of ensemble technique has important role of classifier. This paper, presents the analysis on classification technique of ...

متن کامل

Nearest neighbor classification from multiple feature subsets

Combining multiple classiiers is an eeective technique for improving accuracy. There are many general combining algorithms, such as Bagging, Boosting, or Error Correcting Output Coding, that signiicantly improve classiiers like decision trees, rule learners, or neural networks. Unfortunately, these combining methods do not improve the nearest neighbor classiier. In this paper, we present MFS, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998